[1] Lev D . The Technological and Commercial Expansion of Electric Propulsion in the Past 24 Years[R]. IEPC 2017-242.
[2] Gorshkov O A . Low-Power Hall Type and Ion Electric Propulsion for the Small Sized Spacecraft[R]. AIAA 98-3929.
[3] Zikeyev M V . Development of High-Performance Discharge Chamber of the Plasma-Ion Thruster with Low Power (50-150 Wt) [D]. Russia:Ph.D. Thesis, 2002.
[4] Koroteev A S , Lovtsov A S . Development of Ion Thruster IT-500[J]. The European Physical Journal D, 2017, 71(5): 311.
[5] Goebel D M , Polk J , Sengupta A . Discharge Chamber Performance of the NEXIS Ion Thruster[R]. AIAA 2004-3813.
[6] Goebel D M , Katz I . Fundamentals of Electric Propulsion: Ion and Hall Thrusters [M]. USA: John, 2008.
[7] Mahalingam S , Menart J . Primary Electron Modeling in the Discharge Chamber of an Ion Engine[R]. AIAA 2002-4262.
[8] Arakawa Y , Yamada T . Monte Carlo Simulations of Primary Electron Motions in Cusped Discharge Chambers[R]. AIAA 90-2654.
[9] Lovcov A S , Puchkov P M , Shutov V N . High Current Plasma Generator Designed on the Basis of Hollow Cathode for High Power Electric Propulsion[J]. Instruments and Experimental Techniques, 2014, 57(3): 311-316.
[10] Lovtsov A S , Puchkov P M , Shutov V N . Autonomous Tests of the Cathode for Use in the Discharge Chamber of the High-Power Ion Thruster[R]. IEPC 2013-054.
[11] Muravlev V A , Shagayda A A . Numerical Modeling of Extraction Systems in Ion Thrusters[R]. IEPC 99-162.
[12] Miller J S . Xenon Charge Exchange Cross Section for Electrostatic Thruster Models[J]. Journal of Applied Physics, 2002, 91(3): 984.
[13] Peng X , Ruyten W M , Keefer D . Three Dimensional Particle Simulation of Grid Erosion in Ion Thrusters[R]. IEPC 1991-119.
[14] Arakawa Y , Nakano M . An Efficient Three-Dimensional Optics Code for Ion Thruster Research[R]. AIAA 96-3198.
[15] Anderson J R , Katz I , Goebel D . Numerical Simulation of Two-Grid Ion Optics Using a 3D Code[R]. AIAA 2004-3782.
[16] Nakano M . Three-Dimensional Simulations of Grid Erosion in Ion Engines[J]. Vacuum, 2008, 83(1): 82-85.
[17] Snyder J , Goebel D , Polk J , et al . Results of a 2000-Hour Wear Test of the NEXIS Ion Engine[R]. IEPC 2005-281.
[18] Williams G J Hickman Jr , , Foster J E , et al . Preliminary Wear Analysis Following a 2000 hr Wear Test of a 20kW Class Ion Thruster with Pyrolytic Graphite Ion Optics[R]. IEPC 2005-240.
[19] Lovtsov A S , Shagayda A A , Muravlev V A , et al . Ion Thrusters Development for a Transport and Power Generation Module Project[R]. IEPC 2015-291.
[20] Shagayda A A . Three-Dimensional Analysis of Ion Optics with Deviations of the Apertures Geometry from Axial Symmetry[R]. IEPC 2015-188.
[21] Gorshkov O A , Ilyin A A , Rizakhanov R N . New Large Facility for High-Power Electric Propulsion Tests. 6th Propulsion for Space Transportation of the XXI Century Symposium[R]. Paper S20_2, 2002.
[22] Brophy J R , Kakuda R Y . Ion Propulsion System (NSTAR) DS1. Technology Validation Report[R]. Pasadena: Jet Propulsion Laboratory, 1999.
|